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1. Let y be any irrational number in [0, 1]. Let pn
qn
→ y, pn, qn are positive intergers with gcd{pn, qn} =

1. Show that qn →∞.

Solution: 1. Lets assume that qn is a bounded sequence then there is a subsequence qnj
which

will converge. Since qn are positive intergers so qnj
evenetually a constant sequence say qnj

= b

for large enough nj . Also we have
pnj

qnj
→ y as nj → ∞. Which give lim pnj = b y. Since pnj are

positive integer so we get pnj
= a for large enough nj . So we get a = b y which is contradiction to

the fact y is irrational. �

2. f : [0, 1] → [0,∞) be any function assume that there exists M ≥ 0 such that for all subsets
{x1, x2, · · · , xk} of [0, 1], one has
f(x1) + f(x2) + · · ·+ f(xn) ≤M . Show that G = {x : f(x) 6= 0} is a counatable set.

Solution: 2. We have G = ∪∞n=1{x : f(x) ≥ 1

n
}. Set An = {x : f(x) ≥ 1

n}. We will prove each

An is finite. Let An0 is a infinite set. Let k = n[2M +2], chose {yk}nk+1 from the set An0 then so we

get f(y1) + f(y2) + · · ·+ f(yk) ≥ 1
nn[2M + 2] > M . Which is contradiction to the given condition.

So each An each finite therefore G is countable set. �

3. Let f be a bounded increasing function on (0, 1). Let x0 be in (0, 1). Show that the left limit for f
at x0 viz lim

x→x0

{f(x) : x < x0} exists and sup
x<x0

f(x).

Solution: 3. Take a increasing sequence xn such that xn < x0 and xn → x0 , then we will have
f(xn) ≤ f(xn+1). We have a incresing sequence {f(xn)}n which is bounded above by f(x0) (since
f is increasing) so sup

n
f(xn) exists (l.u.b property) and f(xn) → sup

n
f(xn). Now it is easy to see

that sup
n
f(xn) = sup

x<x0

f(x). Now take any sequence {yn} with yn < x0 such that yn → x0. Then

every subsequence ynk
has a further increasing subsequence ynkj

such that f(ynkj
) → sup

x<x0

f(x)

goes to sup
x<x0

f(x) by the above argument. So lim
x→x0

{f(x) : x < x0} = sup
x<x0

f(x). �

4. g : [0, 1] −→ R be any continous function with g(0) < 0 < g(1). Show that g assumes the value 0.

Solution: 4. Since g is continous we have g[0, 1] is connected as [0, 1] is connected. Now g(0), g(1) ∈
g[0, 1]. Now connectedness of g[0, 1] will give 0 ∈ g[0, 1] as g(0) < 0 < g(1), i.e g(x0) = 0 for some
x0 ∈ (0, 1). �

5. Let f : R → R be any infinitely differentiable function. State and prove Taylor’s theorem on the
interval [x0, x0 + h] involving f, f ′, f (2) · · · f (n+1) for any n ≥ 1.

Solution: 5. See 5.15 Theorem of W Rudin principles of mathematical analysis with a = x0 and
b = x0 + h �

6. Let f : [a, b]→ R is continous, differentiable and f ′ be continous. Show that

lim
δ→0

sup
a≤x≤b

sup
0<|t−x|<δ

∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣ = 0

.
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Solution: 6. Since f is differentiable we have f(t) − f(x) = (t − x)f ′(c), a < c < b. Since f ′ is
continous on [a, b] so its uniformly continous i.e lim

δ→0
sup
a≤u≤b

sup
0<|u−v|<δ

|f ′(u)− f ′(v)| = 0. Now using

this we have

lim
δ→0

sup
a≤x≤b

sup
0<|t−x|<δ

∣∣f(t)− f(x)

t− x
− f ′(x)

∣∣ = lim
δ→0

sup
a≤x≤b

sup
0<|c−x|<δ

∣∣f ′(c)− f ′(x)
∣∣, min{t, x} < c < max{t, x}

= 0.

�

7. Let a1, a2, · · · , an be a sequence of reals converging to 0. Let α : {1, 2, 3, · · · } → {1, 2, 3, · · · } be
any 1-1 and onto map. Put bj = aαj . show that bj → 0.

Solution:7 Since an → 0 we have |an| < ε n ≥ M . We can alway chose N > M such that
{1, 2, · · · ,M} ⊂ {α(1), α(2), · · · , α(N)}, (N > max

1≤j≤M
α−1(j)).

Now we have {aα(j) : j ≥ N} ⊂ {aj : j ≥M} this will give |bj | = |aα(j)| < ε j ≥ N . �

8. Let a and b be real numbers. If the series (a + b) + (a + 2b) + (a + 3b) + · · · is convergent, then
show that b = 0 and a = 0.

Solution:8 Since
∑
n

(a + nb) < ∞ we have lim
n→∞

(a + nb) = 0. If we assume b 6= 0 then we get

∞ = lim
n→∞

n = −a
b
<∞. So we get b = 0. Once we get b = 0 we have a = 0. �

9. A,B be bounded subsets of [0,∞). Let C = {ab : a ∈ A, b ∈ B}. Let x = supA, y = supB,
z = supC. Note that x need not be in A and y need not be in B. Show that z = xy.

Solution:9 It is easy to see that supC ≤ ab. We can find sequences {an} ⊂ A and {bn} ⊂ B such
that an → x and bn → y this will imply anbn → ab

(
anbn − ab = an(bn − b) + (an − a)b

)
this

together with anbn ∈ C will give z = xy. �

10. (a) Let a1, a2, be a sequence with aj ≥ 0. Let

∞∑
1

aj be convergent, let n1 < n2 < · · · be increasing

sequence of natural numbers let bj = anj
. Show that

∑
j

bj is convergent.

(b) Give an example of a real sequence x1, x2, · · · and a subsequence xn1 , xn2 , · · · such that
∑
xj

is convergent but
∑
xnj is not convergent. Prove your claim.

Solution: 10.(a) Since |
∞∑
j=M

aj | < ε. We can find K such that {bj = anj : j ≥ K} ⊂ {aj : j ≥

M} ⊂. So we have |
∞∑
j=K

bj | ≤ |
∞∑
j=M

aj | < ε.

(b) Set xn = (−1)n−1 1
n and xnj

= x2j . Then
∑
xnj

= −
∑

1
2j is divergent. Now define

S2N =

2N∑
n=1

(−1)n−1
1

n
. Then

S2N = 1− 1

2
+

1

3
− 1

4
+· · ·+ 1

2N − 1
− 1

2N
= 1−

(1

2
− 1

3

)
−
(1

4
− 1

5

)
−· · ·−

( 1

2N − 2
− 1

2N − 1

)
− 1

2N
< 1.
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Now S2 = 1 − 1
2 , S4 = 1 − 1

2 + (1
3 −

1
4 ) > S2, S6 = 1 − 1

2 + (1
3 −

1
4 ) + ( 1

5 −
1
6 ) > S4. In this way

we can see that {S2N}N is incresing sequence but bounded above by 1. So limS2N exists. Now
S2N+1 = S2N + 1

2N+1 which will give limS2N = limS2N+1, so SN is convergent. �

11. Let aj > 0 for j = 1, 2, 3, · · · . Assume that
aj+1

aj
and a

1
j

j are also bounded sequence. Show that

lim sup
j→∞

a
1
j

j ≤ lim sup
j→∞

aj+1

aj
.

Solution:11 See 3.37 Theorem of W Rudin (principles of mathematical analysis). �

12. Define f : [0, 1]→ R by f(x) = xa sin( 1
xc ) where c > 0 and a ≥ 0 for x > 0, f(0) = 0.

(i) If f is continous at 0, show that a > 0.
(ii) If f is differentiable at 0, show that a > 1.

Solution:12 (i) Let assume a ≤ 0. Then take xn =

(
2

(2n+1)π

) 1
c

≤ 1. Now we have

f(xn) =

(
2

(2n+ 1)π

) a
c

sin
(2n+ 1)π

2
→∞ (or 1) as n→∞, as a < 0 (or a = 0).

So we get if a ≤ 0, f is not continous at 0. On the other hand if a > 0 we get∣∣∣∣xa sin
1

xc

∣∣∣∣ ≤ |x|a < ε as |x| < ε
1
a .

(ii) If f is differentiable at 0 then following limit has to exist.

lim
x→0

xa sin 1
xc

x
= lim
x→0

xa−1 sin
1

xc
.

The above limit will exist if a > 1 so we get f is differentiable at 0 then a > 1. �

13. Let f : [0,∞) → R be continuous and differentiable on (0,∞). Further let f(0) = 0 and f ′ is

increasing on (0,∞). Define g(x) = f(x)
x for x > 0. Show that g is increasing on (0,∞).

Solution: 13 Now for x > 0 we have g′(x) = 1
x

[
f ′(x)− f(x)

x

]
. MVT will give f(x) = xf ′(c) 0 <

c < x. So g′(x) = 1
x [f ′(x) − f ′(c)] > 0 as 0 < c < x and f ′ is increasing for x > 0. g′(x) > 0 for

x > 0 imply g is increasing on (0,∞). �

14. Let aij : R → R be C∞ functions for i, j = 1, 2, 3 Let α(x) = det
[(
aij(x)

)]
. show that the

derivative of α can be written as a sum of three determinants involving aij and its derivatives. Be
as explicit as possible.

Solution: 14 A calculation will give the following

α′(x) =

∣∣∣∣∣∣
a′11(x) a′12(x) a′13(x)
a21(x) a22(x) a23(x)
a31(x) a32(x) a33(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11(x) a12(x) a13(x)
a′21(x) a′22(x) a′23(x)
a31(x) a32(x) a33(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11(x) a12(x) a13(x)
a21(x) a22(x) a23(x)
a′31(x) a′32(x) a′33(x)

∣∣∣∣∣∣ .
�
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15. Let f : R → R is a C2 function i.e f, f ′, f ′′ all are continous. Assume that M0 = sup
x
|f(x)| and

M2 = sup
x
|f ′′(x)| are both finite. Put M1 = sup

x
|f ′(x)|. Show that M2

1 ≤M0 M2.

Solution:15 Taylor’s theorem will give

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ), x < ξ < x+ h.

From above we get

f ′(x) =
1

h
[f(x+ h)− f(x)]− h2

2
f ′′(ξ) ⇒ |f ′(x)| ≤ 2

h
M0 +

h

2
M2

If we put h = 2
√

M0

M2
in the above we get M1 ≤ 2

√
M0M2 i.e M2

1 ≤M0 M2. �

16. Let a1, a2, · · · be a sequence of reals with
∑
aj convergent. Let n1 < n2 < n3 · · · · · · . Put b1 =

a1 + a2 + · · ·+ an1 , b2 = an1+1 + an1+2 + · · ·+ an2 , b3 = an2+1 + an2+2 + · · ·+ an3 and so on. Show
that the series b1 + b2 + b3 + · · · convergent and converges to

∑
ar.

Solution: 16 We have

M∑
k=N

bk =

nM∑
j=nN−1+1

aj , M > N . Now the fact N → ∞ imply nN−1 +

1, nM → ∞ give the convergence of
∑
bj . Now for any N ∈ N we have nk ≤ N < nk+1 for some

nk.
N∑
j=1

bj −
N∑
j=1

aj =

nM∑
j=nk+m+1

aj , N = nk +m, m ≥ 0.

Now N →∞ imply nk +m+ 1, nM →∞, So we will get lim
N→∞

∣∣∣∣ N∑
j=1

bj −
N∑
j=1

aj

∣∣∣∣ = 0.

In above we use the fact that

M∑
k=N

ak → 0 as N,M →∞ (
∑
k ak is convergent). �

17. Show that any disjoint collection of bounded intervals each of positive length is finite or countable.

Solution: 17 Let {Iα}α∈A be a uncountable disjoint collection of bounded intervals each has
positive length. Since rationals Q are dense in R, so from each Iα we can chose a rational number
xα (∈ Iα ∩ Q). Since Iα ∩ Iβ = ∅ α 6= β, we get a {xα}α∈A uncountable collection of rationals,
which is not possible. So {Iα}α∈A has to be a finite or countable collection. �

18. Let f : (a, b)→ R be continous every where and differentiable at x0 in (a, b). Let x0 < an < bn and

bn → x0, if bn−x0

bn−an is a bounded sequence, show that f(bn)−f(an)
bn−an → f ′(x0).

Solution: 18 Let bn = x0 + hn, an = x0 + un, 0 < un < hn. So we have hn, un → 0 (as bn → x0).

Given that bn−x0

bn−an = hn

hn−un
is bounded, so there exist a subsequence

hnk

hnk
−unk

=
bnk
−x0

bnk
−ank

→

lim inf
n

hn
hn − un

. Since
unk

hnk
−unk

is also bounded we have further subsequence
unkj

hnkj
−unkj

→ lim sup
nk

unk

hnk
− unk

.
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lim inf
n

f(bn)− f(an)

bn − an
≥ lim inf

n

f(x0 + hn)

hn

hn
hn − un

+ lim inf
n

f(x0 + un)

hn

−un
hn − un

= f ′(x0) lim inf
n

hn
hn − un

− f ′(x0) lim sup
n

un
hn − un

= f ′(x0)

[
lim
kj→∞

hnkj

hnkj
− unkj

− lim
kj→∞

unkj

hnkj
− unkj

]
= f ′(x0).

So we get lim inf
n

f(bn)− f(an)

bn − an
≥ f ′(x0).

Similar method as above will give lim sup
n

f(bn)− f(an)

bn − an
≤ f ′(x0). So we get f(bn)−f(an)

bn−an → f ′(x0).
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