1. Let y be any irrational number in [0,1]. Let $\frac{p_n}{q_n} \to y$, p_n , q_n are positive intergers with $\gcd\{p_n, q_n\} = 1$. Show that $q_n \to \infty$.

Solution: 1. Lets assume that q_n is a bounded sequence then there is a subsequence q_{n_j} which will converge. Since q_n are positive intergers so q_{n_j} evenetually a constant sequence say $q_{n_j} = b$ for large enough n_j . Also we have $\frac{p_{n_j}}{q_{n_j}} \to y$ as $n_j \to \infty$. Which give $\lim p_{n_j} = b$ y. Since p_{n_j} are positive integer so we get $p_{n_j} = a$ for large enough n_j . So we get a = b y which is contradiction to the fact y is irrational.

2. $f: [0,1] \to [0,\infty)$ be any function assume that there exists $M \ge 0$ such that for all subsets $\{x_1, x_2, \dots, x_k\}$ of [0,1], one has $f(x_1) + f(x_2) + \dots + f(x_n) \le M$. Show that $G = \{x : f(x) \ne 0\}$ is a counatable set.

Solution: 2. We have $G = \bigcup_{n=1}^{\infty} \{x : f(x) \ge \frac{1}{n}\}$. Set $A_n = \{x : f(x) \ge \frac{1}{n}\}$. We will prove each A_n is finite. Let A_{n_0} is a infinite set. Let k = n[2M+2], chose $\{y_k\}_{k+1}^n$ from the set A_{n_0} then so we get $f(y_1) + f(y_2) + \cdots + f(y_k) \ge \frac{1}{n}n[2M+2] > M$. Which is contradiction to the given condition. So each A_n each finite therefore G is countable set.

3. Let f be a bounded increasing function on (0,1). Let x_0 be in (0,1). Show that the left limit for f at x_0 viz $\lim_{x\to x_0} \{f(x): x < x_0\}$ exists and $\sup_{x < x_0} f(x)$.

Solution: 3. Take a increasing sequence x_n such that $x_n < x_0$ and $x_n \to x_0$, then we will have $f(x_n) \le f(x_{n+1})$. We have a incresing sequence $\{f(x_n)\}_n$ which is bounded above by $f(x_0)$ (since f is increasing) so $\sup_n f(x_n)$ exists (l.u.b property) and $f(x_n) \to \sup_n f(x_n)$. Now it is easy to see that $\sup_n f(x_n) = \sup_{x < x_0} f(x)$. Now take any sequence $\{y_n\}$ with $y_n < x_0$ such that $y_n \to x_0$. Then every subsequence y_{n_k} has a further increasing subsequence $y_{n_{k_j}}$ such that $f(y_{n_{k_j}}) \to \sup_{x < x_0} f(x)$ goes to $\sup_{x < x_0} f(x)$ by the above argument. So $\lim_{x \to x_0} \{f(x) : x < x_0\} = \sup_{x < x_0} f(x)$.

4. $g:[0,1] \longrightarrow \mathbb{R}$ be any continous function with g(0) < 0 < g(1). Show that g assumes the value 0. **Solution:** 4. Since g is continous we have g[0,1] is connected as [0,1] is connected. Now $g(0),g(1) \in g[0,1]$. Now connectedness of g[0,1] will give $0 \in g[0,1]$ as g(0) < 0 < g(1), i.e $g(x_0) = 0$ for some $x_0 \in (0,1)$.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be any infinitely differentiable function. State and prove Taylor's theorem on the interval $[x_0, x_0 + h]$ involving $f, f', f^{(2)} \cdots f^{(n+1)}$ for any $n \ge 1$.

Solution: 5. See 5.15 Theorem of W Rudin principles of mathematical analysis with $a=x_0$ and $b=x_0+h$

6. Let $f:[a,b]\to\mathbb{R}$ is continous, differentiable and f' be continous. Show that

$$\lim_{\delta \to 0} \sup_{a \le x \le b} \sup_{0 < |t-x| < \delta} \left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = 0$$

.

Solution: 6. Since f is differentiable we have f(t) - f(x) = (t - x)f'(c), a < c < b. Since f' is continous on [a, b] so its uniformly continous i.e $\lim_{\delta \to 0} \sup_{a \le u \le b} \sup_{0 < |u - v| < \delta} |f'(u) - f'(v)| = 0$. Now using this we have

$$\lim_{\delta \to 0} \sup_{a \le x \le b} \sup_{0 < |t-x| < \delta} \left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = \lim_{\delta \to 0} \sup_{a \le x \le b} \sup_{0 < |c-x| < \delta} \left| f'(c) - f'(x) \right|, \quad \min\{t, x\} < c < \max\{t, x\} = 0.$$

7. Let a_1, a_2, \dots, a_n be a sequence of reals converging to 0. Let $\alpha : \{1, 2, 3, \dots\} \to \{1, 2, 3, \dots\}$ be any 1-1 and onto map. Put $b_j = a_{\alpha j}$. show that $b_j \to 0$.

Solution:7 Since $a_n \to 0$ we have $|a_n| < \epsilon$ $n \ge M$. We can alway chose N > M such that $\{1, 2, \dots, M\} \subset \{\alpha(1), \alpha(2), \dots, \alpha(N)\}, (N > \max_{1 \le j \le M} \alpha^{-1}(j)).$

Now we have $\{a_{\alpha(j)}: j \geq N\} \subset \{a_j: j \geq M\}$ this will give $|b_j| = |a_{\alpha(j)}| < \epsilon \ j \geq N$.

8. Let a and b be real numbers. If the series $(a+b)+(a+2b)+(a+3b)+\cdots$ is convergent, then show that b=0 and a=0.

Solution:8 Since $\sum_{n}(a+nb)<\infty$ we have $\lim_{n\to\infty}(a+nb)=0$. If we assume $b\neq 0$ then we get $\infty=\lim_{n\to\infty}n=-\frac{a}{b}<\infty$. So we get b=0. Once we get b=0 we have a=0.

9. A, B be bounded subsets of $[0, \infty)$. Let $C = \{ab : a \in A, b \in B\}$. Let x = supA, y = supB, z = supC. Note that x need not be in A and y need not be in B. Show that z = xy.

Solution:9 It is easy to see that $supC \leq ab$. We can find sequences $\{a_n\} \subset A$ and $\{b_n\} \subset B$ such that $a_n \to x$ and $b_n \to y$ this will imply $a_nb_n \to ab$ $(a_nb_n - ab = a_n(b_n - b) + (a_n - a)b)$ this together with $a_nb_n \in C$ will give z = xy.

10. (a) Let a_1, a_2 , be a sequence with $a_j \ge 0$. Let $\sum_{1}^{\infty} a_j$ be convergent, let $n_1 < n_2 < \cdots$ be increasing sequence of natural numbers let $b_j = a_{n_j}$. Show that $\sum_{i} b_j$ is convergent.

(b) Give an example of a real sequence x_1, x_2, \cdots and a subsequence x_{n_1}, x_{n_2}, \cdots such that $\sum x_j$ is convergent but $\sum x_{n_j}$ is not convergent. Prove your claim.

Solution: 10.(a) Since $|\sum_{j=M}^{\infty} a_j| < \epsilon$. We can find K such that $\{b_j = a_{n_j} : j \geq K\} \subset \{a_j : j \geq K\}$

 $M\} \subset$. So we have $|\sum_{j=K}^{\infty} b_j| \leq |\sum_{j=M}^{\infty} a_j| < \epsilon$.

(b) Set $x_n = (-1)^{n-1} \frac{1}{n}$ and $x_{n_j} = x_{2j}$. Then $\sum x_{n_j} = -\sum \frac{1}{2j}$ is divergent. Now define $S_{2N} = \sum_{n=1}^{2N} (-1)^{n-1} \frac{1}{n}$. Then

$$S_{2N} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2N-1} - \frac{1}{2N} = 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2N-2} - \frac{1}{2N-1}\right) - \frac{1}{2N} < 1.$$

Now $S_2 = 1 - \frac{1}{2}$, $S_4 = 1 - \frac{1}{2} + (\frac{1}{3} - \frac{1}{4}) > S_2$, $S_6 = 1 - \frac{1}{2} + (\frac{1}{3} - \frac{1}{4}) + (\frac{1}{5} - \frac{1}{6}) > S_4$. In this way we can see that $\{S_{2N}\}_N$ is incresing sequence but bounded above by 1. So $\lim S_{2N}$ exists. Now $S_{2N+1} = S_{2N} + \frac{1}{2N+1}$ which will give $\lim S_{2N} = \lim S_{2N+1}$, so S_N is convergent.

11. Let $a_j > 0$ for $j = 1, 2, 3, \cdots$. Assume that $\frac{a_{j+1}}{a_j}$ and $a_j^{\frac{1}{j}}$ are also bounded sequence. Show that $\limsup_{j \to \infty} a_j^{\frac{1}{j}} \leq \limsup_{j \to \infty} \frac{a_{j+1}}{a_j}$.

Solution:11 See 3.37 Theorem of W Rudin (principles of mathematical analysis).

- 12. Define $f:[0,1] \to \mathbb{R}$ by $f(x) = x^a \sin(\frac{1}{x^c})$ where c > 0 and $a \ge 0$ for x > 0, f(0) = 0.
 - (i) If f is continous at 0, show that a > 0.
 - (ii) If f is differentiable at 0, show that a > 1.

Solution:12 (i) Let assume $a \le 0$. Then take $x_n = \left(\frac{2}{(2n+1)\pi}\right)^{\frac{1}{c}} \le 1$. Now we have

$$f(x_n) = \left(\frac{2}{(2n+1)\pi}\right)^{\frac{a}{c}} \sin\frac{(2n+1)\pi}{2} \to \infty \ (or \ 1) \ as \ n \to \infty, \ as \ a < 0 \ (or \ a = 0).$$

So we get if $a \leq 0$, f is not continous at 0. On the other hand if a > 0 we get

$$\left| x^a \sin \frac{1}{x^c} \right| \le |x|^a < \epsilon \ as \ |x| < \epsilon^{\frac{1}{a}}.$$

(ii) If f is differentiable at 0 then following limit has to exist.

$$\lim_{x \to 0} \frac{x^a \sin \frac{1}{x^c}}{x} = \lim_{x \to 0} x^{a-1} \sin \frac{1}{x^c}.$$

The above limit will exist if a > 1 so we get f is differentiable at 0 then a > 1.

13. Let $f:[0,\infty)\to\mathbb{R}$ be continuous and differentiable on $(0,\infty)$. Further let f(0)=0 and f' is increasing on $(0,\infty)$. Define $g(x)=\frac{f(x)}{x}$ for x>0. Show that g is increasing on $(0,\infty)$.

Solution: 13 Now for x > 0 we have $g'(x) = \frac{1}{x} \left[f'(x) - \frac{f(x)}{x} \right]$. MVT will give $f(x) = xf'(c) \ 0 < c < x$. So $g'(x) = \frac{1}{x} [f'(x) - f'(c)] > 0$ as 0 < c < x and f' is increasing for x > 0. g'(x) > 0 for x > 0 imply g is increasing on $(0, \infty)$.

14. Let $a_{ij}: \mathbb{R} \to \mathbb{R}$ be C^{∞} functions for i, j = 1, 2, 3 Let $\alpha(x) = det[(a_{ij}(x))]$. show that the derivative of α can be written as a sum of three determinants involving a_{ij} and its derivatives. Be as explicit as possible.

Solution: 14 A calculation will give the following

$$\alpha'(x) = \begin{vmatrix} a'_{11}(x) & a'_{12}(x) & a'_{13}(x) \\ a_{21}(x) & a_{22}(x) & a_{23}(x) \\ a_{31}(x) & a_{32}(x) & a_{33}(x) \end{vmatrix} + \begin{vmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) \\ a'_{21}(x) & a'_{22}(x) & a'_{23}(x) \\ a_{31}(x) & a_{32}(x) & a_{33}(x) \end{vmatrix} + \begin{vmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) \\ a'_{21}(x) & a_{22}(x) & a_{23}(x) \\ a'_{31}(x) & a'_{32}(x) & a'_{33}(x) \end{vmatrix}.$$

15. Let $f: \mathbb{R} \to \mathbb{R}$ is a C^2 function i.e f, f', f'' all are continous. Assume that $M_0 = \sup_x |f(x)|$ and $M_2 = \sup |f''(x)|$ are both finite. Put $M_1 = \sup |f'(x)|$. Show that $M_1^2 \leq M_0$ M_2 .

Solution:15 Taylor's theorem will give

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi), \quad x < \xi < x+h.$$

From above we get

$$f'(x) = \frac{1}{h}[f(x+h) - f(x)] - \frac{h^2}{2}f''(\xi) \implies |f'(x)| \le \frac{2}{h}M_0 + \frac{h}{2}M_2$$

If we put $h=2\sqrt{\frac{M_0}{M_2}}$ in the above we get $M_1\leq 2\sqrt{M_0M_2}$ i.e $M_1^2\leq M_0$ M_2 .

16. Let a_1, a_2, \cdots be a sequence of reals with $\sum a_i$ convergent. Let $n_1 < n_2 < n_3 \cdots$. Put $b_1 =$ $a_1 + a_2 + \dots + a_{n_1}$, $b_2 = a_{n_1+1} + a_{n_1+2} + \dots + a_{n_2}$, $b_3 = a_{n_2+1} + a_{n_2+2} + \dots + a_{n_3}$ and so on. Show that the series $b_1 + b_2 + b_3 + \dots$ convergent and converges to $\sum a_r$.

Solution: 16 We have $\sum_{k=N}^{M} b_k = \sum_{j=n_{N-1+1}}^{n_M} a_j$, M > N. Now the fact $N \to \infty$ imply $n_{N-1} + 1$, $n_M \to \infty$ give the convergence of $\sum b_j$. Now for any $N \in \mathbb{N}$ we have $n_k \le N < n_{k+1}$ for some

$$\sum_{j=1}^{N} b_j - \sum_{j=1}^{N} a_j = \sum_{j=n_k+m+1}^{n_M} a_j, \quad N = n_k + m, \quad m \ge 0.$$

Now $N \to \infty$ imply $n_k + m + 1$, $n_M \to \infty$, So we will get $\lim_{N \to \infty} \left| \sum_{j=1}^N b_j - \sum_{j=1}^N a_j \right| = 0$.

In above we use the fact that $\sum_{k=N}^{M} a_k \to 0$ as $N, M \to \infty$ ($\sum_k a_k$ is convergent).

17. Show that any disjoint collection of bounded intervals each of positive length is finite or countable.

Solution: 17 Let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a uncountable disjoint collection of bounded intervals each has positive length. Since rationals \mathbb{Q} are dense in \mathbb{R} , so from each I_{α} we can chose a rational number $x_{\alpha} \ (\in I_{\alpha} \cap \mathbb{Q})$. Since $I_{\alpha} \cap I_{\beta} = \emptyset \ \alpha \neq \beta$, we get a $\{x_{\alpha}\}_{{\alpha} \in A}$ uncountable collection of rationals, which is not possible. So $\{I_{\alpha}\}_{{\alpha}\in A}$ has to be a finite or countable collection.

18. Let $f:(a,b)\to\mathbb{R}$ be continous every where and differentiable at x_0 in (a,b). Let $x_0< a_n< b_n$ and $b_n \to x_0$, if $\frac{b_n - x_0}{b_n - a_n}$ is a bounded sequence, show that $\frac{f(b_n) - f(a_n)}{b_n - a_n} \to f'(x_0)$.

Solution: 18 Let $b_n = x_0 + h_n$, $a_n = x_0 + u_n$, $0 < u_n < h_n$. So we have h_n , $u_n \to 0$ (as $b_n \to x_0$). Given that $\frac{b_n - x_0}{b_n - a_n} = \frac{h_n}{h_n - u_n}$ is bounded, so there exist a subsequence $\frac{h_{n_k}}{h_{n_k} - u_{n_k}} = \frac{b_{n_k} - x_0}{b_{n_k} - a_{n_k}} \to \lim_{n \to \infty} \frac{h_n}{h_n - u_n}$. Since $\frac{u_{n_k}}{h_{n_k} - u_{n_k}}$ is also bounded we have further subsequence $\frac{u_{n_k}}{h_{n_k_j} - u_{n_k_j}} \to \lim_{n_k} \frac{u_{n_k}}{h_{n_k} - u_{n_k}}$.

$$\liminf_{n} \frac{f(b_{n}) - f(a_{n})}{b_{n} - a_{n}} \ge \liminf_{n} \frac{f(x_{0} + h_{n})}{h_{n}} \frac{h_{n}}{h_{n} - u_{n}} + \liminf_{n} \frac{f(x_{0} + u_{n})}{h_{n}} \frac{-u_{n}}{h_{n} - u_{n}}$$

$$= f'(x_{0}) \liminf_{n} \frac{h_{n}}{h_{n} - u_{n}} - f'(x_{0}) \limsup_{n} \frac{u_{n}}{h_{n} - u_{n}}$$

$$= f'(x_{0}) \left[\lim_{k_{j} \to \infty} \frac{h_{n_{k_{j}}}}{h_{n_{k_{j}}} - u_{n_{k_{j}}}} - \lim_{k_{j} \to \infty} \frac{u_{n_{k_{j}}}}{h_{n_{k_{j}}} - u_{n_{k_{j}}}} \right]$$

$$= f'(x_{0}).$$

So we get $\liminf_{n} \frac{f(b_n) - f(a_n)}{b_n - a_n} \ge f'(x_0)$.

Similar method as above will give $\limsup_{n} \frac{f(b_n) - f(a_n)}{b_n - a_n} \le f'(x_0)$. So we get $\frac{f(b_n) - f(a_n)}{b_n - a_n} \to f'(x_0)$.